Thursday, January 27, 2005
Homo Economicus, meet Neuroscience
I return to a subject that's been discussed on this blog several times in the past -- does human behaviour consist entirely of reason or a combination of reason and emotion? The trend in economics, until recently, was heavily biased towards reason. New research emerging from psychology, neuroscience etc may cause the reason crowd (which includes me from time to time) some grief.
The current bout of research is made possible by the arrival of new technologies such as functional magnetic-resonance imaging, which allows second-by-second observation of brain activity. At several American universities, economists and their collaborators in the neurosciences have been placing human subjects in such brain scanners and asking them to perform a variety of economic tasks and games.
For example, the idea that humans compute the “expected value” of future events is central to many economic models. Whether people will invest in shares or buy insurance depends on how they estimate the odds of future events weighted by the gains and losses in each case. Your pension, for example, might have a very low expected value if there is a large probability that bonds and shares will plunge just before you retire.
Brian Knutson, of Stanford University, carried out one recent brain-scan experiment to understand how humans compute such things. Subjects were asked to perform a task, in this case pressing a button during a short interval in which a certain shape was flashed on to a screen. In some trials, the subjects could win up to $5 if successful, while in others they would have to defend against a $5 loss. Before presenting the target, the researchers signalled to subjects which kind of trial they were in.
Brain activity in certain neural systems seemed to reveal a strong correlation with the amount of money at stake. Moreover, the prospects of gains and losses activated different parts of the brain. Traditional economists had long thought—or assumed—that the prospect of a $1,000 gain could compensate you for an equally likely loss of the same size. In subsequent trials, subjects were given another signal: one that provided an estimate of the odds of success. That allowed the researchers to identify the regions of the brain used for recognising an amount of money and for estimating the probability of winning (or losing) it. Having identified these regions, the hope is that future work can measure how the brain performs in situations such as share selection, gambling or deciding to participate in a pension scheme.
In one recent experiment, noted in our science section on October 30th, Mr Laibson and others found that the brain's response to short-term riches (in this case, gift certificates of $15 or $20) occurs largely in the limbic system, a region that governs emotion. By contrast, the prospect of rewards farther into the future triggers the prefrontal cortex, which is often associated with reason and calculation. Thus, choosing immediate economic gratification, by spending excessively on credit cards or not saving enough even though you “know better”, could be a sign that the limbic system is in charge.
Identifying the parts of the brain that control economic actions is one thing. Harder tasks include determining how neural systems work together to create behaviour, and how wide is the variation in brain patterns between different people. Then there are age-old questions of free will: is your failure to save for old age simply a lifestyle choice, or is it down to faulty brain circuits?
The current bout of research is made possible by the arrival of new technologies such as functional magnetic-resonance imaging, which allows second-by-second observation of brain activity. At several American universities, economists and their collaborators in the neurosciences have been placing human subjects in such brain scanners and asking them to perform a variety of economic tasks and games.
For example, the idea that humans compute the “expected value” of future events is central to many economic models. Whether people will invest in shares or buy insurance depends on how they estimate the odds of future events weighted by the gains and losses in each case. Your pension, for example, might have a very low expected value if there is a large probability that bonds and shares will plunge just before you retire.
Brian Knutson, of Stanford University, carried out one recent brain-scan experiment to understand how humans compute such things. Subjects were asked to perform a task, in this case pressing a button during a short interval in which a certain shape was flashed on to a screen. In some trials, the subjects could win up to $5 if successful, while in others they would have to defend against a $5 loss. Before presenting the target, the researchers signalled to subjects which kind of trial they were in.
Brain activity in certain neural systems seemed to reveal a strong correlation with the amount of money at stake. Moreover, the prospects of gains and losses activated different parts of the brain. Traditional economists had long thought—or assumed—that the prospect of a $1,000 gain could compensate you for an equally likely loss of the same size. In subsequent trials, subjects were given another signal: one that provided an estimate of the odds of success. That allowed the researchers to identify the regions of the brain used for recognising an amount of money and for estimating the probability of winning (or losing) it. Having identified these regions, the hope is that future work can measure how the brain performs in situations such as share selection, gambling or deciding to participate in a pension scheme.
In one recent experiment, noted in our science section on October 30th, Mr Laibson and others found that the brain's response to short-term riches (in this case, gift certificates of $15 or $20) occurs largely in the limbic system, a region that governs emotion. By contrast, the prospect of rewards farther into the future triggers the prefrontal cortex, which is often associated with reason and calculation. Thus, choosing immediate economic gratification, by spending excessively on credit cards or not saving enough even though you “know better”, could be a sign that the limbic system is in charge.
Identifying the parts of the brain that control economic actions is one thing. Harder tasks include determining how neural systems work together to create behaviour, and how wide is the variation in brain patterns between different people. Then there are age-old questions of free will: is your failure to save for old age simply a lifestyle choice, or is it down to faulty brain circuits?