Tuesday, December 30, 2003
The Future of Flight
Okay, so I am really running late with reading the Economist. So, the next couple of posts are probably old hat. Nevertheless, I thought they made excellent reading. First, a special that ponders the future of flight, especially that of UAV's. Obviously, the special was written on the occasion of the 100th anniversary of the Wright flight. Flight certainly has come a long way since the Flyer and has a long way to go from now.
As UAVs have proved themselves in various theatres of war, military interest has blossomed. In the past two years, American spending on them has gone from $300m-400m a year to over $1 billion, according to Laurence Newcome, who runs the website “UAV Forum”. America's Department of Defence expects to spend $16 billion on UAVs between 2002 and 2010. According to a UAV road map from America's Department of Defence, by 2012 UAVs the size of F-16 fighter aircraft are likely to exist. These will be capable of many combat and support missions, including the suppression of enemy air defences and electronic attacks on enemy sensors. The ultimate goal is to enable America to project its power on to the far side of the globe with no need for nearby air bases, or risk to the lives of pilots.
By 2020, the Pentagon estimates that one-third of America's combat planes will be robotic. UAVs certainly look as though they will be commanding a large share of future military spending (see chart). And the Joint Strike Fighter being built by Lockheed Martin looks as though it will be the last new manned American fighter for decades. By 2100, human military pilots will be a quaint oddity. Why? Even if pilots could be beefed up with an exoskeleton that would allow their bodies to turn under a force 20 times that of the Earth's gravity, they think and react more slowly than computers.
The world's smallest UAV is currently the 15cm-long, electrically powered, Black Widow. It can fly for 30 minutes and download live colour video to the ground via its onboard camera. Many such craft are being developed for “over the hill” work, when soldiers need scouts in dangerous areas. Future ground forces are likely to carry insect-sized craft routinely, launching them by hand into the air. Soon enough, these craft may also have “perch and stare” capabilities—to allow surveillance periods lasting weeks. Tiny UAVs may be used as sensors, to mark points for precision air strikes, and for detecting radiological, chemical or biological contamination. By 2100, they will probably be smaller than houseflies and available in supermarkets in packs of ten.
Further ahead, the HyperSoar is a concept for a craft flying at ten times the speed of sound and able to reach any point on the globe within two hours. Hydrogen powered, it would use air-breathing, rocket-based engines to ascend to the outer limits of the Earth's atmosphere where it would skitter in and out of the atmosphere like a stone being skimmed across the surface of a pond. If it works, the craft would also make access to space a great deal cheaper.
A complex ecology of planes is emerging for different routes and functions. At one extreme are massive aircraft such as the Airbus A380 serving the most popular routes—whose successors will perhaps double its capacity to 1,000 people. At the other end, there will be insect-sized spy craft. Humanity will finally master the skies in the coming century and in doing so will largely eliminate the pilot. With a future this bright for aircraft, what humanity really needs is a cure for jet lag.
As UAVs have proved themselves in various theatres of war, military interest has blossomed. In the past two years, American spending on them has gone from $300m-400m a year to over $1 billion, according to Laurence Newcome, who runs the website “UAV Forum”. America's Department of Defence expects to spend $16 billion on UAVs between 2002 and 2010. According to a UAV road map from America's Department of Defence, by 2012 UAVs the size of F-16 fighter aircraft are likely to exist. These will be capable of many combat and support missions, including the suppression of enemy air defences and electronic attacks on enemy sensors. The ultimate goal is to enable America to project its power on to the far side of the globe with no need for nearby air bases, or risk to the lives of pilots.
By 2020, the Pentagon estimates that one-third of America's combat planes will be robotic. UAVs certainly look as though they will be commanding a large share of future military spending (see chart). And the Joint Strike Fighter being built by Lockheed Martin looks as though it will be the last new manned American fighter for decades. By 2100, human military pilots will be a quaint oddity. Why? Even if pilots could be beefed up with an exoskeleton that would allow their bodies to turn under a force 20 times that of the Earth's gravity, they think and react more slowly than computers.
The world's smallest UAV is currently the 15cm-long, electrically powered, Black Widow. It can fly for 30 minutes and download live colour video to the ground via its onboard camera. Many such craft are being developed for “over the hill” work, when soldiers need scouts in dangerous areas. Future ground forces are likely to carry insect-sized craft routinely, launching them by hand into the air. Soon enough, these craft may also have “perch and stare” capabilities—to allow surveillance periods lasting weeks. Tiny UAVs may be used as sensors, to mark points for precision air strikes, and for detecting radiological, chemical or biological contamination. By 2100, they will probably be smaller than houseflies and available in supermarkets in packs of ten.
Further ahead, the HyperSoar is a concept for a craft flying at ten times the speed of sound and able to reach any point on the globe within two hours. Hydrogen powered, it would use air-breathing, rocket-based engines to ascend to the outer limits of the Earth's atmosphere where it would skitter in and out of the atmosphere like a stone being skimmed across the surface of a pond. If it works, the craft would also make access to space a great deal cheaper.
A complex ecology of planes is emerging for different routes and functions. At one extreme are massive aircraft such as the Airbus A380 serving the most popular routes—whose successors will perhaps double its capacity to 1,000 people. At the other end, there will be insect-sized spy craft. Humanity will finally master the skies in the coming century and in doing so will largely eliminate the pilot. With a future this bright for aircraft, what humanity really needs is a cure for jet lag.